skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fujita, Saneiki"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this study, we propose a scenario superposition method for real‐time tsunami wave prediction. In the offline phase, prior to actual tsunami occurrence, hypothetical tsunami scenarios are created, and their wave data are decomposed into spatial modes and scenario‐specific coefficients by the singular value decomposition. Then, once an actual tsunami event is observed, the proposed method executes an online phase, which is a novel contribution of this study. Specifically, the predicted waveform is represented by a linear combination of training scenarios consisting of precomputed tsunami simulation results. To make such a prediction, a set of weight parameters that allow for appropriate scenario superposition is identified by the Bayesian update process. At the same time, the probability distribution of the weight parameters is obtained as reference information regarding the reliability of the prediction. Then, the waveforms are predicted by superposition with the estimated weight parameters multiplied by the waveforms of the corresponding scenarios. To validate the performance and benefits of the proposed method, a series of synthetic experiments are performed for the Shikoku coastal region of Japan with the subduction zone of the Nankai Trough. All tsunami data are derived from numerical simulations and divided into a training data set used as scenario superposition components and a test data set for an unknown real event. The predicted waveforms at the synthetic gauges closest to the Shikoku Islands are compared to those obtained using our previous prediction method incorporating sequential Bayesian updating. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025